# Physics-aware variational auto-encoders

# Bachelor thesis, Master thesis, or ADP July 2025





Prof. Dr. Oliver Weeger www.cps.tu-darmstadt.de

### Contact:

M.Sc. Fabian Roth roth@cps.tu-darmstadt.de



M.Sc. Dominik Klein klein@cps.tu-darmstadt.de



# Introduction

Auto-encoders are a powerful machine learning method with various applications such as dimensionality reduction, clustering, and denoising, to name but a few. A fundamental part of auto-encoders is the projection of a high-dimensional input space to a low-dimensional latent space. With variational auto-encoders, the structure of the latent space can be improved, e.g., by biasing it towards a specific probability distribution. This can improve the performance of the auto-encoder, and more than that, enables its application in generative AI, i.e., generating new content based on the data the model has been trained on.

# **Potential topics**

The aim of this thesis is to formulate variational auto-encoder that consider prior physical knowledge, e.g., in the form of invariances and symmetries. Possible fields of application include continuum mechanical constitutive modeling, generation of mechanical microstructures, or reduced-order modeling of dynamical systems. For this, suitable architectures for variational auto-encoders shall be developed and implemented in Python.

# Requirements

This thesis is suitable for students from engineering, computer science, and mathematics studies. The student should have a sound mechanical or mathematical understanding and good programming skills in Python and preferably a machine learning library such as TensorFlow or JAX.



TECHNISCHE

UNIVERSITÄT DARMSTADT

