Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Advanced Design Project Englischer Titel: Advanced Design Project	alle Professoren des Fachbereichs Maschinenbau	deutsch / englisch	4 bis 12	WS und/oder SS	D

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) wechselnd	jeweils mindestens ein Professor des Fachbereichs		P	4 bis 12
	Maschinenbau			

Qualifikationsziele und Kompetenzen:

Die Studenten sind in der Lage, im Team komplexe Probleme zu erkennen und zu benennen sowie mögliche Lösungen zu finden und zu bewerten. Sie beherrschen die Grundzüge der genauen Arbeits- und Zeitplanung bei komplexen Aufgaben und übernehmen Leitungsaufgaben eines Teams. Sie erwerben die Fertigkeiten, zwischen divergierenden Standpunkten zu vermitteln und erkennen die Notwendigkeit von Kompromissen sowohl in zwischenmenschlichen Beziehungen als auch beim Lösen ingenieurtypischer Probleme.

Studienleistungen:

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Mögliche Voraussetzungen werden vom anbietenden Fachgebiet bei der Aufgabenstellung
ADP (Generalbeschreibung)	angegeben.

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		schriftliche Ausarbeitung mit 2-3	Vortragsdauer: 15-30 min mit
		Seiten pro Teilnehmer und	anschließender Diskussion
		Kreditpunkt, Präsentation. In die	
		Beurteilung gehen sowohl	
		individuelle Leistungskriterien	
		als auch die Gesamtleistung des	
		Teams ein.	

Erläuterungen:

Die Einbindung der Industrie ist sowohl bei der Stellung der Aufgabe, als auch bei der Bereitstellung von Hilfsmitteln als auch bei der Präsentation der Ergebnisse möglich.

Modulinhalte / Prüfungsanforderungen:

zu Lehrveranstaltung 1)

Aktuelle Aufgbenstellungen aus dem Fokus der anbietenden Fachgebiete

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

abhängig vom Projekt; wird vom Fachgebiet bekannt gegeben

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Forschungsseminar Englischer Titel: Forschungsseminar	alle Professoren des Fachbereichs Maschinenbau	deutsch / englisch	4	WS und/oder SS	D

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) wechselnd	jeweils mindestens ein		S	4
	Professor des Fachbereiches			
	Maschinenbau			

Qualifikationsziele und Kompetenzen:

Der Student beherrscht die Grundlagen der wissenschaftlichen Arbeitsweise. Er kann sich selbstständig Zugang zu einem für ihn neuen Thema verschaffen und notwendige Informationen aus Datenbanken, Bibliotheken und von Dritten beschaffen. Der Student ist in der Lage, die ihm gestellte Aufgabe zu strukturieren und zeitlich zu organisieren. Neben der fachlichen Qualifikation in dem von ihm erarbeitetem Thema ist er in der Lage, die Ergebnisse in schriftlicher und mündlicher Form wissenschaftlich korrekt zu präsentieren sowie Themenbeiträge anderer Teilnehmer fachlich kritisch zu debattieren.

Studienleistungen:

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Spezifische Voraussetzungen werden vom anbietenden Fachgebiet bei der Aufgabenstellung
Forschungsseminar (Generalbeschreibung)	angegeben

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		Schriftliche Ausarbeitung	Gesamtdauer des Kolloquiums: 60-90
		(Richtwert 15-25 Seiten)	min, davon mindestens 30 min
		entsprechend einer	Diskussion. Die Beteiligung an den
		wissenschaftlichen	Präsentationsveranstaltungen der
		Veröffentlichung sowie ein	anderen Seminarteilnehmer ist
		Kolloquium	verpflichtend.

Erläuterungen:

Zur Ankündigung der Seminare ist eine Planung vorzulegen, aus der die Termine für die Aufgabenstellung und die Präsentationen hervorgehen. Die Gesamtdauer zwischen Aufgabenstellung und Präsentation darf zwei Monate nicht unterschreiten und sechs Monate nicht überschreiten.

Modulinhalte / Prüfungsanforderungen:

zu Lehrveranstaltung 1)

Aktuelle Aufgabenstellungen aus dem Fokus der anbietenden Fachgebiete und deren Randgebiete

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

abhängig vom Themengebiet; wird vom Fachgebiet bekannt gegeben

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Digitale Drucktechnologien	Dörsam	deutsch	4	WS	D
Englischer Titel: Digital Printing					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Digitale Drucktechnologien	Dörsam	16.110.1	V	4

Englischer Titel: Digital Printing

Qualifikationsziele und Kompetenzen:

Die Studierenden können die Begriffe und die Systematik der digitalen Drucktechnologie erläutern. Sie können die Anwendungsgebiete einschätzen. Sie können einen Überblick über die verschiedenen Prinzipien des Workflows geben. Sie können die Bedeutung der Rasterung und die Darstellung von Halbtönen beschreiben. Die Prinzipien und technischen Details der Elektrofotografie, des Thermodrucks und des Inkjet-Drucks können sie eindeutig erklären. Sie haben einen Überblick über verschiedene Bauformen von digitalen Drucksystemen. Sie können eine Einschätzung zu den Umwelteigenschaften geben.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Maschinenelemente und Mechatronik I und II
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

Es wird empfohlen, an den angebotenen Kurzexkursionen zu Druckereibetrieben in der Region teilzunehmen. Die Teilnahme an der VDD-Seminarreihe mit Vorträgen aus der Industrie wird empfohlen.

zu Lehrveranstaltung 1)

Terminologie der digitalen Drucktechnologie; Workflow, Rasterverfahren; Tonwert; Technologie des Digitaldrucks (Elektrofotografie, Inkjet, Thermodruck); Toner, Tinte und Bedruckstoff; Konstruktive Gestaltung.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Drucktechnologie: Design und Simulation	Dörsam	deutsch	6	SS	D
Englischer Titel: Printing Technology: Design and Simulation					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Drucktechnologie: Design und Simulation	Dörsam		V	6

Englischer Titel: Printing Technology: Design and Simulation

Qualifikationsziele und Kompetenzen:

Die Studierenden besitzen vertieftes Wissen über ausgewählte Themen aus dem Gebiet der Drucktechnologie. Sie können für die betreffenden Funktions- und Baugruppen die gegebenen Randbedingungen erläutern. Sie können die Auswirkungen auf das Design beschreiben und Vorschläge für das Design erarbeiten. Sie sind in der Lage, geeignete Modelle zu erstellen und die dazu erforderliche Theorie zu erläutern. Sie können mit Matlab Simulationsmodelle erstellen und beispielhaft erproben. Sie kennen den Stand der Forschung für die ausgewählten Themen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Grundkenntnisse in Matlab; Konstruktionsprinzipien im Druckmaschinenbau
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	40 min

Erläuterungen:

Vorlesungsbegleitend werden Übungen in "Matlab" angeboten. Eine minimale Punktzahl in den Übungen muss erreicht werden.

zu Lehrveranstaltung 1)

Ausgewählte Kapitel der Drucktechnologie mit Simulationsbeispielen: Auslegung und Materialgesetze viskoelastischer Kontaktzonen; Dosierung und Transport von Farbe im Druckwerk; Gestaltung und Auslegung von langen, dünnen Walzen; Gestaltung und Auswahl von hochgenauen Lagern; Schwingungen in Druckmaschinen; Bahnspannung und -regelung in Rollenmaschinen; Wickelprozess; Simulationsübungen mit MatLab.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Farbwiedergabe in den Medien	Dörsam	deutsch	6	WS	D
Englischer Titel: Colour in Media					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Farbwiedergabe in den Medien	Dörsam	16.122.1	V	6

Englischer Titel: Colour in Media

Qualifikationsziele und Kompetenzen:

Die Studierenden können den Aufbau und die Arbeitsweise des Visuellen Systems des Menschen erklären. Sie kennen die Bedeutung von Licht, Farbe, Spektrum und den Unterschied zwischen photometrischen und radiometrischen Größen. Sie können die Bedeutung und Anwendungsgebiete der verschiedenen Farbräume, -modelle und -systeme erläutern. Sie können die mathematischen Beziehungen der Farbmetrik und deren Anwendung in der Farbmesstechnik darstellen und erklären. Sie können die Farbdarstellung mit digitalen Auf- und Wiedergabesystemen, mit analogen Filmen und in der Drucktechnik erklären und die mathematischen Beziehungen angeben. Sie erkennen die Gemeinsamkeiten in der Farbreproduktion, aber auch die Unterschiede. Sie können die aktuellen Normungsbemühungen und Forschungsschwerpunkte nennen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Grundkenntnisse in Physik, Praktische Farbmessung (empfohlen)
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	40 min

Erläuterungen:

Vorlesungsbegleitend werden praktische Übungen zur Farbmetrik angeboten.

zu Lehrveranstaltung 1)

Bedeutung des Begriffs "Farbe"; Physiologie des Auges; Farbensehen; Geschichte der Farbenlehre; Grundbegriffe der Optik und der Farbmetrik; Höhere Farbmetrik; Lichtfarben, Körperfarben, Interferenzfarben; Farbräume; Farbumfang; Farbtiefe; Farbprofile, Farbmessung; Farbdarstellung in der Digitalen Aufnahme- und Wiedergabetechnik; Farbdarstellung auf analogem Film; Farbdarstellung im Druck; Colormanagement.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Menschengerechtes Konstruieren	Dörsam	deutsch	4	SS	D
Englischer Titel: Human Oriented Design					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Menschengerechtes Konstruieren	Dörsam / Neudörfer		V	4
Englischer Titel: Human Oriented Design				

Qualifikationsziele und Kompetenzen:

Die Studierenden können technische Gefahren in Konstruktionen und an realen Maschinen systematisch suchen, erkennen und beheben. Sie können die wichtigsten Grundsätze der sicherheits- und ergonomiegerechten Gestaltung von Maschinen umsetzen. Sie kennen die wichtigsten rechtlichen Aspekte der Europäischen Maschinenrichtlinie und daraus resultierende persönliche Konsequenzen im Fall von mangelhaften Konstruktionen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Maschinenelemente und Mechatronik I und II
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

Eine Projektarbeit ist anzufertigen. Die Ergebnisse sind in einem Kurzvortrag zu präsentieren. Es wird empfohlen, an den angebotenen Kurzexkursionen zu Institutionen, die sich mit Sicherheit beschäftigen, teilzunehmen.

zu Lehrveranstaltung 1)

Rechtliche Grundlagen für sicherheitsgerechtes Konstruieren, Institutionen, Organisationen, deren Rechte und Kompetenzen; Deterministische und stochastische Gefahren, Analyse und Bewertung von Gefährdungen und Risiken; Grundlagen des ergonomie- und sicherheitsgerechten Konstruierens von Maschinen.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird im Internet angeboten. Lehrbuch: A. Neudörfer: Konstruieren sicherheitsgerechter Produkte, Heidelberg, Springer 2005

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Papierverarbeitung I	Wilken	deutsch	4	WS	D
Englischer Titel: Paper Converting I (Fundamentals)					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Papierverarbeitung I	Wilken	16/266/1	V	4

Englischer Titel: Paper Converting I

Qualifikationsziele und Kompetenzen:

Kenntnisse über die zur Verarbeitung von Papier und Kunststoffen relevanten Materialeigenschaften, Prozesse und Verfahren, Kenntnis und Fähigkeit zur Modellierung der physikalischen und chemischen Effekte der verbindenden Verfahren (insbesondere Kleben), der trennenden Verfahren (Schneiden und Stanzen) und der umformenden Verfahren (Rillen, Riffeln und Prägen), Grundkenntnisse zur Konzeption der entsprechenden Papiervearbeitungsprozesse.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Papiertechnik
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Einführung in die Struktur der Papierverarbeitungstechnik, ihre grundlegenden Prozesse und Verfahrenstechniken, Übersicht über die papierverarbeitende Industrie, Materialkunde Papier und Kunststoff, Verfahren zur Herstellung von Kunststofffolien, Theorien und Anwendungstechniken der verbindenden Verfahren (insbesondere Kleben), trennenden Verfahren (Schneiden und Stanzen) und umformenden Verfahren (Rillen, Riffeln und Prägen).

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Papierverarbeitung II	Wilken	deutsch	4	SS	D
Englischer Titel: Paper Converting II (Application Technology)					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Papierverarbeitung II	Wilken	16/175/1	V	4

Englischer Titel: Paper Converting II (Application Technology)

Qualifikationsziele und Kompetenzen:

Kenntnis der Verfahren zur Herstellung von Wellpappe und Verpackungen aus Wellpappe, Faltschachteln, Büchern und Broschüren, flexible Verpackungen (u.a. Tüten, Beutel, Säcke), Etiketten (Mehrweg-Flaschenetiketten, Selbstklebeetiketten), Hülsen und Rundgefäße, Hygienepapierwaren inklusive Maßnahmen zur Qualitätssicherung sowie jeweils wichtige Normen und Standards, allgemeine Aspekte (Markttrends, Recycling usw.). Grundkenntnisse zur Konzeption der entsprechenden Verarbeitungsprozesse, Fähigkeit zur Einschätzung der Relevanz von Papierqualitätsparametern für die Papierverarbeitung.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Papierverarbeitung I
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Materialien, Maschinen und Anlagen zur Herstellung von Wellpappe und Verpackungen aus Wellpappe, Faltschachteln, Büchern und Broschüren, flexible Verpackungen (u.a. Tüten, Beutel, Säcke), Etiketten (Mehrweg-Flaschenetiketten, Selbstklebeetiketten), Hülsen und Rundgefäße, Hygienepapierwaren inklusive Maßnahmen zur Qualitätssicherung sowie jeweils wichtige Normen und Standards, allgemeine Aspekte (Markttrends, Recycling usw.)

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Printed Electronics	Dörsam	deutsch	4	SS oder WS (tbd.)	D
Englischer Titel: Printed Electronics					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Printed Electronics	Dörsam / Mitarbeiter		V	4

Englischer Titel: Printed Electronics

Qualifikationsziele und Kompetenzen:

Die Studierenden können einen Überblick über die geeigneten Drucktechnologien für "Printed Electronics" geben. Sie kennen drucktechnisch geeignete Materialien und können deren Auswirkungen am Beispiel von Antennen und OFET's auf das Design beschreiben. Sie können die verschiedenen Maßnahmen zur Qualitätssicherung einordnen und bewerten. Sie sind in der Lage, die grundlegenden Funktionen, den Aufbau, die Materialien und die spezifischen Eigenschaften von gedruckten Antennen, RFID's, Fotovoltaik und Batterien zu erklären. Sie können das Drucken von Elektronik als eine interdisziplinäre Aufgabe der Fachdisziplinen Elektrotechnik, Materialwissenschaften und Maschinenbau beschreiben.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Maschinenelemente und Mechatronik I und Elektrotechnik
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

Den Studierenden wird die Teilnahme an der VDD-Seminarreihe mit Vorträgen aus der Industrie empfohlen.

zu Lehrveranstaltung 1)

Drucktechnologien für funktionales Drucken (Druckverfahren und Drucksysteme); Design und Materialien für gedruckte Elektronik (Antennen, OFET, RFID); Maßnahmen zur Qualitätssicherung; Anwendungsbeispiele (Antennen, RFID, OFET, Fotovoltaik, Batterien, Lab on a Chip).

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Print-Media-Management A	Dörsam	deutsch	4	WS	D
Englischer Titel: Print Media Management A					

Lehrveranstaltungen	Dozent		Lehrformen	Credits
1) Print-Media-Management A	Dörsam / Mitarbeiter	16.140.4	S	4

Englischer Titel: Print Media Management A

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die volkswirtschaftliche Bedeutung des Strukturwandels in der Druckindustrie. Sie können den Einfluss der Globalisierung und die unterschiedlichen wirtschaftlichen und technologischen Konzepte der Druckindustrie und der Druckmaschinenhersteller beschreiben. Sie sind in der Lage, volkswirtschaftliche Zusammenhänge bezüglich eines ausgewählten Bereichs in einem selbstständig erarbeiteten Referat darzustellen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Druck- und Medientechnik
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung	
		mündlich	30 min	

Erläuterungen:

Eine seminarbegleitende Hausarbeit im Umfang von 10 Seiten ist anzufertigen. Die Ergebnisse sind in einem Kurzvortrag zu präsentieren. Die Teilnahme an der VDD-Seminarreihe mit Vorträgen aus der Industrie wird empfohlen.

zu Lehrveranstaltung 1)

Potenziale, Chancen und Risiken der Medienbranche im Umfeld des "Heavy Metal" der Druckmaschinen; Positionierung der Printmedien im Medienumfeld (Märkte, Unternehmen für und Abnehmer von Printmedien-Dienstleistungen); Strategien und Marketing im Printmedien-Unternehmen; Besondere Merkmale aktueller technischer Prozesse sowie Systeme/Werkzeuge/Standards; IT-Einsatz in Administration und Technik; Rationalisierungspotentiale in Administration und Technik; Grundzüge einer praxisrelevanten betriebswirtschaftlichen Methodik; Entwicklungstendenzen.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Print-Media-Management B	Dörsam	deutsch	4	SS	D
Englischer Titel: Print Media Management B					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Print-Media-Management B	Dörsam / Mitarbeiter	16.144.4	S	4

Englischer Titel: Print Media Management B

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die betriebswirtschaftliche Bedeutung des Strukturwandels in der Druckindustrie. Sie sind in der Lage, den Wandel in der Druckindustrie vom Produzenten zum Dienstleister und die daraus resultierenden Auswirkungen auf die Maschinenhersteller zu beschreiben. Sie sind in der Lage, anhand eines Beispiels betriebswirtschaftliche Methoden auf die Druckindustrie anzuwenden und die Ergebnisse in einem selbstständig erarbeiteten Referat darzustellen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Druck- und Medientechnik
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

Eine seminarbegleitende Hausarbeit im Umfang von 10 Seiten ist anzufertigen. Die Ergebnisse sind in einem Kurzvortrag zu präsentieren. Die Teilnahme an der VDD-Seminarreihe mit Vorträgen aus der Industrie wird empfohlen.

zu Lehrveranstaltung 1)

Methoden zur Ermittlung und Umsetzung von Marketingstrategien in der Print-Media-Industrie (aus Anbieter-, Abnehmer- und Produktsicht im Bereich der Printmedien); Methoden und Formen der Neupositionierung der Print-Media-Unternehmen im gewachsenen Medienumfeld (Cross-Media, All-Medien, Vernetzung, Kundenintegration bei der Planungs-, Abwicklungs- und Produktionsprozesses); Betriebswirtschaftliche Methodik zur Steuerung und Kontrolle des Produktionsprozesses bei der Auftragsabwicklung (Standardisierung, Fertigungsorientierung und Prozessbetrachtung).

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Prozesse der Papiertechnik II - Papierrecycling	Schabel	deutsch	4	SS	D
Englischer Titel: Advanced Paper Recycling					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Duozacca dan Daniataahnik II. Daniannaavaling	Schabel / Putz / Hamm		V	1
1) Prozesse der Papietechnik II - Papierrecycling	Schabel / Putz / Haillin		V	4

Englischer Titel: Advanced Paper Recycling

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die aktuellen Techniken für das Recycling von Papier und zur Prozesswasserbehandlung sowie der technischen Herausforderungen. Sie können wissenschaftliche Methoden für die Bearbeitung dieser Problemstellungen auswählen und anwenden.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung	
		mündlich	30 min	

Erläuterungen:

zu Lehrveranstaltung 1)

Fließeigenschaften von Fasersuspensionen, vertiefte Behandlung der Recycling Prozesse Zerfaserung, Sortierung, Reinigung und Flotation sowie der Verfahren zur Prozesswasserbehandlung (aerob/ anaerob)

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung, elektronisches Lehrmaterial unter www.pmv.tu-darmstadt.de

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Tutorium Farbwissenschaft	Dörsam	deutsch	4	WS und SS	D
Englischer Titel: Laboratory Course in Colour Science					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Tutorium Farbwissenschaft	Dörsam		T	4

Englischer Titel: Laboratory Course in Colour Science

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die Einflüsse, die die Beleuchtungsart, -richtung und der Bedruckstoff auf die Farbempfindung haben. Sie sind in der Lage, mit verschiedenen Messmethoden Farben zu vergleichen und Farbabweichungen zu beurteilen. Sie kennen die Verfahren sowie Vor- und Nachteile der Densitometrie und der spektralen Farbmessung. Sie wissen, was Glanz ist und in welcher Weise er die Messergebnisse beeinflusst. Weiterhin kennen sie typische Probleme bei der Qualitätskontrolle von Effektfarben. Sie kennen Möglichkeiten zur Farbsteuerung während des Druckprozesses. Sie kennen die Ziele und Methoden des Colormanagements. Sie sind in der Lage, Versuche eigenständig vorzubereiten, durchzuführen und in selbstständig angefertigten Berichten auszuwerten.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Praktische Farbmessung oder Farbwiedergabe in den Medien (empfohlen)
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Farbmetrik und Farbmessung: Messung von Farben auf unterschiedlichen Bedruckstoffen (Papier, Folie, Metall), Densitometrie, spektrale Messung, Glanzmessung; Messung von Effektfarben; Steuerung der Farbe im Druckprozess (Vorstufe bis Endkontrolle), Steuerung der Farbe für die Wiedergabe auf unterschiedlichen Medien (Colormanagement).

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird zu Beginn der Veranstaltung verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Tutorium Viskoelastizität und Rheologie	Dörsam	deutsch	4	WS und SS	D
Englischer Titel: Laboratory Course in Visco-Elasticity and Rheology					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Tutorium Viskoelastizität und Rheologie	Dörsam		T	4

Englischer Titel: Laboratory Course in Visco-Elasticity and Rheology

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die Grundlagen über elastisches, viskoses und viskoelastisches Werkstoffverhalten. Sie sind in der Lage mittels verschiedener Messverfahren komplexes Werkstoffverhalten zu quantifizieren und zu beurteilen. Sie besitzen einen grundlegenden Einblick in das rheologische und elastische Verhalten von Elementen der Druckmaschine und des Druckproduktes im Druckprozess. Sie sind in der Lage, Versuche eigenständig vorzubereiten, durchzuführen und in selbstständig angefertigten Berichten auszuwerten.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Grundkenntnisse in Strömungslehre und Werkstoffkunde
Freie LV	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Viskoelastizität und Rheologie: Grundlagen der Rheologie von Farben und Lacken der grafischen Industrie. Grundlagen des Verhaltens von elastischen und viskoelastischen Elementen der Druckmaschine. Messmethoden und Verfahren zur Bestimmung von komplexem Werkstoffverhalten.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird zu Beginn der Veranstaltung verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Master-Thesis Englischer Titel: Master-Thesis	alle Professoren des Fachbereichs Maschinenbau	deutsch / englisch	30	WS und/oder SS	D

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) wechselnd	jeweils mindestens ein Professoren des Fachbereiches Maschinenbau		Thesis	30

Qualifikationsziele und Kompetenzen:

Der Student ist in der Lage, unter Anwendung ingenieurwissenschaftlicher Methoden ein gestelltes Forschungsthema selbstständig erfolgreich zu bearbeiten, den wissenschaftlichen Kenntnisstand zu erweitern und die Ergebnisse in schriftlicher und mündlicher Form wissenschaftlich korrekt zu präsentieren.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Mögliche Voraussetzungen werden vom anbietenden Fachgebiet bei der Aufgabenstellung
Master-Thesis	angegeben.

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		Schriftliche Ausarbeitung sowie	Vortragsdauer 20-30 min mit
		ein Kolloquium	anschließender Diskussion

Erläuterungen:

zu Lehrveranstaltung 1)

Aktuelle Aufgabenstellungen aus der Forschung der anbietenden Fachgebiete

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

abhängig vom Themengebiet

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Chemische Prüfung von Zellstoff und Papier	N.N.	deutsch	4	WS	D
Englischer Titel: Chemical analysis of pulp and paper					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Chemische Prüfung von Zellstoff und Papier	N.N.		V	4

Englischer Titel: Chemical analysis of pulp and paper

Qualifikationsziele und Kompetenzen:

Die Studenten kennen die Methoden der analytischen Chemie für qualitative Einzel- und Gruppennachweise von Kationen und Anionen sowie die Grundlagen der Titration und Gravimetrie und quantitativen Nachweisreaktionen für Kationen und Anionen, die für die Papiertechnik relevant sind. Sie können Analyse-Strategien für den Nachweis von Anionen und Kationen ausarbeiten.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	

Erläuterungen:

zu Lehrveranstaltung 1)

Methoden der analytische Chemie, qualitative Einzel- und Gruppennachweise von Kationen und Anionen, Grundlagen der Gravimetrie und Titration, quantitative Nachweisreaktionen für Kationen und Anionen, die für die Papiertechnik relevant sind.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Chemische Technologie des Zellstoffs und Papiers I	N.N.	deutsch	4	SS	D
Englischer Titel: Chemical technology of pulp and paper I					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Chemische Technologie des Zellstoffs und Papiers I	N.N.		V	4

Englischer Titel: Chemical technology of pulp and paper I

Qualifikationsziele und Kompetenzen:

Die Studenten kennen die Chemie und Morphologie des Holzes, den Aufbaus von Pflanzenfasern, die chemischen Holzaufschlussverfahren (Sulfat- und Sulfitverfahren), die chemsichen Faserstoffbleichverfahren sowie die für die Papiertechnik relevanten chemischen Eigenschaften von Fasern und Füllstoffen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	

Erläuterungen:

zu Lehrveranstaltung 1)

Chemische Aspekte der Papierherstellung, Chemie und Morphologie des Holzes, Aufbau der Pflanzenfasern, Cellulose und Cellulosebegleitstoffe, chemischer Holzaufschluss, Faserstoffbleiche, papierrelevante Faser- und Füllstoffeigenschaften

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Chemische Technologie des Zellstoffs und Papiers II	N.N.	deutsch	4	WS	D
Englischer Titel: Chemical technology of pulp and paper II					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Chemische Technologie des Zellstoffs und Papiers II	N.N.		V	4

Englischer Titel: Chemical technology of pulp and paper II

Qualifikationsziele und Kompetenzen:

Die Studenten kennen die Wirkungsmechanismen von chemischen Additiven zur Verbesserung der Papiereigenschaften bzw. der Papierproduktion (Retentions- und Leimungsmittel, Störstofffänger, optische Aufheller). Sie können die Prozess- und Produktchemie für die behandelten Prozesse optimieren.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	

Erläuterungen:

zu Lehrveranstaltung 1)

Additive zur Verbesserung von papier- und Produktionseigenschaften (Retentionsmittel, Leimungsmittel, Störstofffänger, optische Aufheller)

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Chemisches Praktikum	N.N.	deutsch	4	SS	D
Englischer Titel: Experimental course in chemical Analysis					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Chemisches Praktikum	N.N.		P	4

Englischer Titel: Experimental course in chemical Analysis

Qualifikationsziele und Kompetenzen:

Die Studierenden können chemische Analysen zum qualitativen und quantitativen Nachweis von Anionen und Kationen selbstständig durchführen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	

Erläuterungen:

zu Lehrveranstaltung 1)

Methoden der Laborpraxis und der chemischen Analyse, Qualitartive und quantitative Nachweise von für die Papiertechnik relevanten Anionen und Kationen

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Grundlagen der Papiertechnik	Schabel	deutsch	4	WS	D
Englischer Titel: Unit processes of Paper Production and Paper Recyclin	ng I				

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Grundlagen der Papiertechnik	Schabel	16262/1	V	4

Englischer Titel: Unit Processes of Paper Production and Recycling

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die technischen Zusammenhänge und Funktionen der verschiedenen Teilprozesse der Papierherstellung und des Papierrecycling, die wissenschaftlichen Ansätze zur Beschreibung und Modellierung dieser Prozesse und Teilprozesse sowie die Größenordnungen wichtiger physikalisch-technischer Größen wie z. B. Energieverbrauch, spezifische Produktion oder spezifischer Rohstoffeinsatz. Sie haben die Wechselwirkungen zwischen Teilprozessen und deren gegenseitiger Beeinflussung durch rückgekoppelte Systeme, insbesondere Wasserkreisläufe verstanden. Sie können Produktionsanlagen für die Papierherstellung gemäß Spezifikation grundsätzlich konzipieren.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Papiertechnik
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 bis 45 min

Erläuterungen:

zu Lehrveranstaltung 1)

Papiermaschine mit Blattbildung, mechanische und thermische Entwässerung und Oberflächenbehandlung, Verfahren der Stoffaufbereitung, zur Wasserbehandlung und zur Reststoffbehandlung und Verwertung

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung, elektronisches Lehrmaterial unter www.pmv.tu-darmstadt.de

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Papierchemisches Praktikum	N.N.	deutsch	4	WS	D
Englischer Titel: Experimental course in paper cxhemistry					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Papierchemische Praktikum	N.N.		Ü	4

Englischer Titel: Experimental course in Paper Chemistry

Qualifikationsziele und Kompetenzen:

Die Studenten können chemische Analysen und Labormethoden zum Zellstoffaufschluss und Zellstoffbleiche, zur Prüfung von Zellstoffen, Nassfestigkeit, Leimung und zur Bestimmung und Bewertung des Retentionsverhaltens von Papiersuspensionen selbstständig durchführen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	

Erläuterungen:

zu Lehrveranstaltung 1)

Zellstoffaufschluss, Zellstoffbleiche, Zellstoffprüfungen, Charakterisierung des Retentionsverhaltens, der Nassfestigkeit und der Leimung

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Papierprüfung	Schabel	deutsch	4	WS	D
Englischer Titel: Paper Testing					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Papierprüfung	Schabel		V	4

Englischer Titel: Paper Testing

Qualifikationsziele und Kompetenzen:

Die Studenten kennen die wichtigen Messverfahren zur Prüfung von Papier sowie den erforderlichen Roh- und Hilfsstoffen und die zugrunde liegenden physikalischen Effekte. Sie können die Möglichkeiten und Grenzen der entsprechenden Messmethoden bewerten sowie Messmethoden und Geräte gemäß spezifischen Anforderungen selbst entwickeln.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	keine
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 bis 45 min

Erläuterungen:

zu Lehrveranstaltung 1)

Qualitative und quantitative Bestimmung der Faserstoffzusammensetzung von Papieren (Fasermikroskopie), Grundeigenschaften von Fasersuspensionen, Festigkeitsprüfung (trocken und feucht), Auswirkungen von Feuchtigkeit auf Papier, Kraft-Dehnungs-Verhalten, Oberflächeneigenschaften, Verhalten gegen Flüssigkeiten, Prüfung durch Laborsimulation.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung, elektronisches Lehrmaterial unter www.pmv.tu-darmstadt.de

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Prozesse der Papierherstellung I	Schabel	deutsch	4	WS	D
Englischer Titel: Fundamentals of Paper Science I					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Prozesse der Papierherstellung I	Schabel	16/261/1	V	4

Englischer Titel: Fundamentals of Paper Science I

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die Vorgehensweise bei der Lösung ingenieurwissenschaftlicher Fragestellungen durch Modellierung der physikalischen Effekte, Bilanzierung und Simulation. Sie haben Kenntnis der Lösungswege entsprechender Fragestellungen für ausgewählte Beispiele auf dem Gebiet der Herstellung. Sie können solche Lösungsansätze auf neue Fragestellungen übertragen.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Papiertechnik
Pflicht	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 bis 45 min

Erläuterungen:

zu Lehrveranstaltung 1)

Modellierung der Vorgänge bei der Papierherstellung und beim Papierrecycling, Modellierung des optischen Verhaltens von Papier (Kubelka-Munk-Theorie);Modellierung von Papierkreisläufen

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung, elektronisches Lehrmaterial unter www.pmv.tu-darmstadt.de

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Tutorium Drucktechnologie	Dörsam	deutsch	4	WS und SS	D
Englischer Titel: Laboratory Course in Printing					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Tutorium Drucktechnologie	Dörsam	16.125.9	T	4

Englischer Titel: Laboratory Course in Printing

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die praktischen Problemstellungen der verschiedenen Druckverfahren und des Colormanagements. Durch verschiedene Versuche, z.B. Tief-, Flexo- und Offsetdruck, besitzen sie einen grundlegenden Einblick in die praktische Durchführung der Druckverfahren und die Messtechniken der Druckindustrie. Sie sind in der Lage, Versuche eigenständig vorzubereiten, durchzuführen und in selbstständig angefertigten Berichten auch auszuwerten.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Druck- und Medientechnik
Tutorium	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Historische Druckverfahren; Farbmetrik und Farbmessung; Bedruckbarkeitsuntersuchungen; Druckversuche (Tief-, Flexo-, Offset-, Sieb-, Inkjet-Druck); Drucken mit einer Bogen-Offsetdruckmaschine.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird zu Beginn der Veranstaltung verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Tutorium Papierprüfung	Schabel	deutsch	4	SS	D
Englischer Titel: Tutorial Paper Testing					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Tutorium Papierprüfung	Schabel		T	4

Englischer Titel: Tutorial Paper Testing

Qualifikationsziele und Kompetenzen:

Die Studenten können systematische Arbeitspläne zur methodischen Analyse von Papier inklusive Roh- und Hilfsstoffen ausarbeiten sowie repräsentative Probenahmen durchführen und Messergebnisse inklusive der Statistik zur Messgenauigkeit bewerten. Sie haben systematische Prüfungen mit aktuellen Messverfahren an Roh- und Hilfsstoffen, an Papieren und in Fasersuspension selbst vorbereitet, durchgeführt und ausgewertet.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Papiertechnik
Tutorium	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung	
		mündlich	30 min	

Erläuterungen:

zu Lehrveranstaltung 1)

Selbstständige Vorbereitung, Durchführung und Auswertung von systematischen Messungen mit gängigen Messverfahren an Papieren, Roh- und Hilfsstoffen sowie in Fasersuspension unter Berücksichtigung der Statistik zur Messgenauigkeit.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Tutorium Papiertechnik	Schabel	deutsch	4	SS	D
Englischer Titel: Tutorium Papiertechnik					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Tutorium Papiertechnik	Schabel		T	4

Qualifikationsziele und Kompetenzen:

Fähigkeit zur selbständigen Durchführung von wissenschaftlichen Untersuchungen an Prozessen der Papierherstellung und des Papierrecycling, Kenntnisse und praktische Erfahrungen zu den wichtigsten Mess- und Analysenmethoden der Papiertechnik, Darstellung, Präsentation und Diskussion der Ergebnisse wissenschaftlicher Untersuchungen

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Einführung in die Papiertechnik, Grundlagen der Papiertechnik
Tutorium	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	45 min

Erläuterungen:

zu Lehrveranstaltung 1)

Planung, Durchführung, Auswertung, Präsentation und Diskussion von drei Versuchen in Kleingruppen aus den Bereichen Mahlung, Recycling, Papierherstellung und Prozesswasserbehandlung. Grundkenntnisse in der Bedienung eines Prozessleitsystems. Simulation eines Teilprozesses der Papierherstellung mit Standard-Software

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Hinweise während der Vorlesung, elektronische Lehrmaterial unter www.pmv.tu-darmstadt.de

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Farbwissenschaft in der Papiertechnik	Dörsam	deutsch	4	SS	D
Englischer Titel: Colour Science in Paper Technology					

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Farbwissenschaft in der Papiertechnik	Dörsam		V	4

Englischer Titel: Colour Science in Paper Technology

Qualifikationsziele und Kompetenzen:

Die Studierenden kennen die Grundzüge der Farbenlehre und können die Prozesse der Farbwahrnehmung beschreiben. Ausgewählte Farbräume sind ihnen bekannt. Sie kennen Methoden und Prinzipien der Farbmessung für Papier und Druckprodukte. Sie können den Farbaufbau beim Druck anhand verschiedener Druckermodelle (Neugebauer, Yule-Nielsen) diskutieren. Sie sind in der Lage, die Reflexion von Papier anhand theoretischer Modelle zu erläutern.

Studienleistungen:

keine

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Grundkenntnisse in Physik
WP Papier	

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung
		mündlich	30 min

Erläuterungen:

zu Lehrveranstaltung 1)

Grundzüge der Farbenlehre, Farbwahrnehmung, ausgewählte Farbräume, Farbmessung (insbesondere von Papier und Druckprodukten), Druckermodelle (Neugebauer, Yule-Nielsen), Reflexionsmodelle von Papier (Kubelka-Munk).

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skriptum wird vorlesungsbegleitend im Internet angeboten. CD mit Materialiensammlung wird zum Veranstaltungsende verteilt.

Titel des Moduls	Modulkoordinator	Sprache	Credits	Angebotsturnus	
Grenzflächenverfahrenstechnik Englischer Titel: Interface Science	Hampe	deutsch mit englischer Zusammenfassu ng	4	WS	D

Lehrveranstaltungen	Dozent	LV Code	Lehrformen	Credits
1) Grenzflächenverfahrenstechnik	Hampe		V	4

Englischer Titel: Interface Science

Qualifikationsziele und Kompetenzen:

Nachdem der Student oder die Studentin die Vorlesung gehört hat, wird er bzw. sie in der Lage sein, 1. Verschiedene wissenschaftliche Sichtweisen auf Grenzflächen und Oberflächen zu diskutieren, Ober- und Grenzflächenspannung zu definieren und Messmethoden für Ober- und Grenzflächenspannungen zu erklären. 2. Den chemischen Aufbau von Tensiden zu erklären und ihre Verwendbarkeit für verschiedene Zwecke über ihren HLB-Wert zu beurteilen. 3. Die Natur des Randwinkels in Flüssig-flüssig-Gas und Fest-flüssig-Gas-Sstemen zu diskutieren und Benetzung, Spreitung und Engulfment vorherzusagen. 4. Das Konzept der kritischen Oberflächenspannung nach Zisman auf die Benetzung von niederenergetischen Oberflächen anzuwenden. 5. Den Einfluss der Krümmung der Phasengrenze auf den Druck und den Dampfdruck zu erklären und das kapillare Saugen und die Kapillardepression einschließlich der Lucas-Washburn-Gleichung zu diskutieren. 6. Filmbeschichtungsvorgänge zu diskutieren und die Filmdicke mit den physikalischen Eigenschaften der Beschichtungsflüssigkeit und den Betriebsbedingungen zu verknüpfen. 7. Kolloidale Systeme zu definieren und und die Brown'sche Bewegung kugelförmiger, oblater und prolater kolloidaler Partikeln im Rahmen der Einstein-Smoluchowski-Theorie zu erklären. 8. Über die Einstein'sche Theorie der Viskosität von Dispersionen aus historischer Sicht zu berichten. 9. Die Natur von Elektrolytlösungen, die Bedeutung des elektrochemischen Potentials und des Redox-Potentials, der Elektroneutralitätsbedingung und der Teilchenartenbilanz unter Berücksichtigung der Wirkung von Konzentrationsgradienten und des elektrischen Feldes zu erklären. 10. Die Grundideen hinter der DLVO-Theorie der Kolloidstabilität und Flokkulation zu erklären und den Einfluss von Ionenkonzentration und Ionenladung auf elektrische Doppelschichten zu diskutieren. 11. Die Natur der London'schen Dispersionskräfte zu erklären und die Wirkung von Dispersionskräften zwischen Platten oder Kugeln zu diskutieren. 12. Den Einfluss der Brown'schen Molekularbewegung und einer Scherströmung auf die Wirksamkeit der Flokkulation bzw. des Partikeleinfangs zu diskutieren und dabei die Dispersionswechselwirkung zu berücksichtigen. 13. Methoden zur Erzeugung und Vernichtung von Schäumen, Emulsionen und Dispersionen zu benennen und zu bewerten.

Studienleistungen:

Verwendbarkeit des Moduls:	Vorausgesetzte Kenntnisse
Master PST	Der Besuch der Veranstaltung erfordert Vorkenntnisse auf dem Gebiet der Thermodynamik
WP Papier	und der Strömungsmechanik.

Prüfungscode	Prüfercode	Form der Prüfung	Dauer der Prüfung	
		mündlich	30 min	

Erläuterungen:

keine

Modulinhalte / Prüfungsanforderungen:

zu Lehrveranstaltung 1)

Thermodynamik der Grenzflächen, Randwinkel, Benetzung, Filmbeschichtung, Kolloidale Lösungen, Brown'sche Molekularbewegung, Viskosität von Dispersionen, Elektrolytsysteme, Leitfähigkeiten, Elektrolyse, Strom-Spannungs-Kurven, Elektrodialyse, DLVO-Theorie, Kolloidstabilität. Schäume, Emulsionen, Dispersionen.

Lehr- und Lernmaterialien

zu Lehrveranstaltung 1)

Skript auf eLearning-Plattform CLIX