

BACHELOR/MASTER THESIS At the Center for Structural Materials

Requirements:

Study of materials science or mechanical engineering,

Independence, data valuation and processing

First experience with Python is of advantage

Faculty:

TU Darmstadt MPA-IfW High-Temperature Materials

Contakt:

M. Sc., Anatoly Zaiat

Tel.: 06151/16-24985 anatoly.zaiat@tudarmstadt.de

Start:

Immediately

Posting:

10.01.2024

Note:

This thesis is also eligible for crediting in Aerospace Engineering.

Digital image correlation

Automatic crack path detection in biaxialy loaded specimen

Background

Digital image correlation is a modern measuring method for determining deformations and strains in material testing. These are calculated by comparing images of the undeformed and deformed state of a test specimen.

In cooperation with the Fraunhofer IPM, the MPA-IfW is working on a new type of camera system for the strain-controlled conduction of aerospace alloy fatique tests. Using the DIC method, strains can be determined so that a formed crack and its crack tip can be detected.

Due to the random orientation of the cracks, crack tip detection currently still requires manual post-processing. The aim of this thesis is therefore to develop an algorithm in Python that can find the crack tip using existing strain data from a test sample and reproduce the course of the crack in a robust manner.

Task

- Literature research on fracture mechanics and DIC
- Learning DIC algorithms in Python
- Comparing DIC algorithms
- Validation of the algorithm

Objectives

- Development of a crack detection algorithm
- Automatic crack tip detection within set uncertainty
- Automatic crack length calculation within set uncertainty