Simulation of reactive Thermo-Fluid Systems

Welcome to the website of the institute for the Simulation of Reactive Thermo Fluid Systems (STFS). At our institute we focus on the modeling and simulation of chemically reactive flows in the fields of mechanical engineering, energy technology and process engineering.

Our mission

To power a sustainable world, our research focuses on chemical energy carriers and exploits the potential of renewable fuels such as hydrogen, ammonia, methanol, iron and aluminum. We develop advanced modeling approaches and simulation techniques for chemically reactive laminar and turbulent multicomponent and multiphase flows. We use these simulation techniques to investigate combustion processes on all scales: from the smallest structures of the reaction zone and the formation of nanoparticles in solid fuel flames to the largest scales of of technically relevant combustion chambers.

The work of our research group is characterized by a close connection between fundamental and application-oriented research. Our aim is to understand the physical principles of combustion through direct numerical simulations (DNS) and to combine this knowledge in advanced mathematical models. By coupling these models with scale-resolving large-eddy simulations (LES), we can investigate even very complex practical applications such as aircraft engines, industrial furnaces and chemical reactors.

To achieve our goals, we work closely with colleagues, especially experimentalists, from science and industry.

Prof. Dr.-Ing. Christian Hasse,
Head of STFS

In our research, we investigate clean energy conversion processes. With simulations on high-performance computers, we gain detailed insights into reactive flows that were unthinkable just a few years ago. In doing so, we bridge the gap between basic research and technical applications.

Christian Hasse

News from STFS

Introduction to the institutes RSM & STFS at the TU Darmstadt

Recommended external content

We have selected external content from YouTube for you and would like to show it to you right here. To do this, you must reveal it with one click. You can hide the external content at any time with another click.

I agree to external content from YouTube being shown to me. This may result in personal data being transmitted to third-party platforms. You can find more information in our Privacy Policy.