Studentische Arbeiten
Am Fachgebiet STFS werden Abschlussarbeiten (Bachelor/Master) und Projektarbeiten (ADP/ARP) angeboten. In der Regel stehen diese studentischen Arbeiten in engem Bezug zu unseren aktuellen Forschungsthemen, wie zum Beispiel:
- Wasserstoffverbrennung
- Daten-getriebene Modellierung von Verbrennungsphänomenen mittels maschinellem Lernen
- Metallverbrennung (Clusterprojekt Clean Circles, ) Clean Circles Website
- Nachhaltige Brennstoffe, z.B. aus Power-to-X Prozessen
- Flamme-Wand Interaktionen / Flammenschutzmittel (Sonderforschungsbereich 150)
- Biomasseverbrennung (Sonderforschungsbereich 129)
- Reduzierung von Schadstoffemissionen / Rußmodellierung
- Aero Engines und Thermoakustik
Wenn Sie eine studentische Abschlussarbeit am Fachgebiet STFS suchen, können Sie die Ansprechpartner der unten eingestellten Arbeiten kontaktieren, oder Sie schreiben initiativ eine E-Mail an lehre@stfs.tu-… mit Ihrer Fächerübersicht, sowie der Nennung Ihrer Vorerfahrungen und Interessen – es ist möglich Aufgabenstellungen aus den oben genannten aktuellen Forschungsthemen abzuleiten und auf das Profil geeigneter Bewerber anzupassen.
Aktuelle Ausschreibungen
Masterthesis
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) conducts cutting-edge research on reactive flows and alternative energy carriers. One of our focus areas is the combustion of metallic fuels, which have the potential to play a key role in future energy systems.
Aluminum, in particular, undergoes a unique combustion process where evaporated metal reacts with steam, forming hydrogen and aluminum oxide. The global reaction and transport rates are controlled by a multitude of tightly coupled processes, including phase changes, gas phase reactions, thermophoresis, and droplet shape evolution—key aspects that are not yet fully understood.
In this thesis, you will contribute to refining numerical models for these processes using OpenFOAM-based simulations. Your work will help improve the predictive capabilities of existing models, enabling more accurate simulations of aluminum combustion.
Do you have experience in CFD, physical modeling, or programming (Python/C++) in a Unix-based environment? If not, are you eager to develop these skills? If so, we encourage you to contact us for more information!
Betreuer/innen: Pascal Steffens, M.Sc., Johannes Mich, M.Sc.
Masterthesis, Hiwi-Stelle
Betreuer/innen: Driss Kaddar, M.Sc, Dr.-Ing. Hendrik Nicolai
Cutting Edge High-Performance Computing
Towards Exascale CFD simulations
20.06.2024
Masterthesis, Hiwi-Stelle
Motivation & Background
To achieve current climate goals, rapid technological changes are necessary. High- performance computing will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) aims to lead this journey by performing groundbreaking simulations. This includes leveraging Europe's first Exascale supercomputer, currently being built at our partner, Jülich Supercomputing Centre.
Your contributions are highly welcome in this exciting endeavor!
Are you an exceptional engineer with a passion for high-performance computing (HPC) and large-scale simulations? Do you thrive in the fast-paced world of HPC and have a knack for optimizing complex simulations on diverse hardware platforms? Do you have a strong programming background (preferably in C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!
Betreuer/innen: Driss Kaddar, M.Sc, Dr.-Ing. Hendrik Nicolai
Hiwi-Stelle
Motivation & Background
The Institute for the Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of research and development in the field of reactive thermo-fluid dynamics. We utilize a variety of open-source and in-house developed codes to simulate and analyze complex fluid systems.
Your contributions to this exciting venture are most welcome!
Do you have a strong programming background (preferably in python and/or C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!
This job also offers a good opportunity to familiarise yourself with our codebase in preparation for a possible thesis at our institute.
Betreuer/innen: Max Schneider, M.Sc. M.Sc., Pascal Steffens, M.Sc.
Masterthesis, Advanced Design Project (ADP) CiP, Hiwi-Stelle
The Institute for the Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of research and development in the field of reactive thermo-fluid dynamics. One of our research areas is the optimization of combustion chambers using simulation methods with regard to pollutant emissions.
A combustion chambers is for example found in gas turbines, where effusion cooling is employed to mitigate the impact of high thermal loads on the combustor walls. In effusion cooled combustors, the interaction of the flame with the cooling air influences the local flame structure and pollutant formation, a phenomenon not yet fully understood.
In your work, these effects are to be investigated in more detail under different operating conditions with detailed chemistry and thermochemical manifolds (a method often used in our institute to speed up simulations).
Do you have a programming background (preferably in C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!
Betreuer/innen: Max Schneider, M.Sc. M.Sc., Dr.-Ing. Hendrik Nicolai
HiWi for Hydrogen Engine CFD Simulations
RANS / LES of hydrogen fueled spark-ignition engines using Converge CFD
30.01.2024
Hiwi-Stelle
We are offering an HiWi (student assistant) position at the Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) to support our research on hydrogen as a carbon-free fuel for internal combustion engines (ICEs). The position involves conducting CFD simulations of the Darmstadt Research Engine in collaboration with the RSM, focusing on hydrogen's unique properties as a fuel. The goal is to build a comprehensive simulation database covering various operating points, utilizing the Converge CFD software. Both motored (non-combustion) and fired (combustion) engine modes will be studied to explore the potential of hydrogen-fueled ICEs as sustainable transportation solutions.
Betreuer/in: Benjamin Traut, M.Sc.