Studentische Arbeiten

Studentische Arbeiten

Am Fachgebiet STFS werden Abschlussarbeiten (Bachelor/Master) und Projektarbeiten (ADP/ARP) angeboten. In der Regel stehen diese studentischen Arbeiten in engem Bezug zu unseren aktuellen Forschungsthemen, wie zum Beispiel:

  • Wasserstoffverbrennung
  • Daten-getriebene Modellierung von Verbrennungsphänomenen mittels maschinellem Lernen
  • Metallverbrennung (Clusterprojekt Clean Circles, Clean Circles Website)
  • Nachhaltige Brennstoffe, z.B. aus Power-to-X Prozessen
  • Flamme-Wand Interaktionen / Flammenschutzmittel (Sonderforschungsbereich 150)
  • Biomasseverbrennung (Sonderforschungsbereich 129)
  • Reduzierung von Schadstoffemissionen / Rußmodellierung
  • Aero Engines und Thermoakustik

Wenn Sie eine studentische Abschlussarbeit am Fachgebiet STFS suchen, können Sie die Ansprechpartner der unten eingestellten Arbeiten kontaktieren, oder Sie schreiben initiativ eine E-Mail an mit Ihrer Fächerübersicht, sowie der Nennung Ihrer Vorerfahrungen und Interessen – es ist möglich Aufgabenstellungen aus den oben genannten aktuellen Forschungsthemen abzuleiten und auf das Profil geeigneter Bewerber anzupassen.

Aktuelle Ausschreibungen

  • Masterthesis, Bachelorthesis, Hiwi-Stelle

    Motivation & Background

    To achieve current climate goals, rapid technological changes are necessary. Data driven model development from large-scale simulations will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.

    The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of pioneering advancements in large-scale simulations and AI-driven model development. Our mission is to lead groundbreaking research and development efforts, leveraging cutting- edge AI and HPC resources to solve complex problems and drive technological innovation. Your contributions to this exciting venture are most welcome!

    Are you a visionary engineer with a passion for large-scale data sets and cutting-edge artificial intelligence (AI) technologies? Do you thrive on transforming complex data into

    next-generation models that drive innovation? Do you have a strong programming background (preferably in python/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!

    Betreuer/innen: Vinzenz Schuh, M.Sc., Dr.-Ing. Hendrik Nicolai

    Ausschreibung als PDF

  • Masterthesis, Hiwi-Stelle

    Betreuer/innen: Driss Kaddar, M.Sc, Dr.-Ing. Hendrik Nicolai

    Ausschreibung als PDF

  • Cutting Edge High-Performance Computing

    Towards Exascale CFD simulations

    20.06.2024

    Masterthesis, Hiwi-Stelle

    Motivation & Background

    To achieve current climate goals, rapid technological changes are necessary. High- performance computing will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.

    The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) aims to lead this journey by performing groundbreaking simulations. This includes leveraging Europe's first Exascale supercomputer, currently being built at our partner, Jülich Supercomputing Centre.

    Your contributions are highly welcome in this exciting endeavor!

    Are you an exceptional engineer with a passion for high-performance computing (HPC) and large-scale simulations? Do you thrive in the fast-paced world of HPC and have a knack for optimizing complex simulations on diverse hardware platforms? Do you have a strong programming background (preferably in C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!

    Betreuer/innen: Driss Kaddar, M.Sc, Dr.-Ing. Hendrik Nicolai

    Ausschreibung als PDF

  • Hiwi-Stelle

    Motivation & Background

    The Institute for the Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of research and development in the field of reactive thermo-fluid dynamics. We utilize a variety of open-source and in-house developed codes to simulate and analyze complex fluid systems.

    Your contributions to this exciting venture are most welcome!

    Do you have a strong programming background (preferably in python and/or C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!

    This job also offers a good opportunity to familiarise yourself with our codebase in preparation for a possible thesis at our institute.

    Betreuer/innen: Max Schneider, M.Sc., Pascal Steffens, M.Sc.

    Ausschreibung als PDF

  • Masterthesis, Advanced Design Project (ADP) CiP, Hiwi-Stelle

    The Institute for the Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of research and development in the field of reactive thermo-fluid dynamics. One of our research areas is the optimization of combustion chambers using simulation methods with regard to pollutant emissions.

    A combustion chambers is for example found in gas turbines, where effusion cooling is employed to mitigate the impact of high thermal loads on the combustor walls. In effusion cooled combustors, the interaction of the flame with the cooling air influences the local flame structure and pollutant formation, a phenomenon not yet fully understood.

    In your work, these effects are to be investigated in more detail under different operating conditions with detailed chemistry and thermochemical manifolds (a method often used in our institute to speed up simulations).

    Do you have a programming background (preferably in C/C++), and proficiency in Unix-based systems? If so, we encourage you to contact us for more information!

    Betreuer/innen: Max Schneider, M.Sc., Dr.-Ing. Hendrik Nicolai

    Ausschreibung als PDF

  • Strömungssimulation eines geschleppten Ottomotors mittels Converge CFD

    Flow simulation of a motored gasoline engine using Converge CFD

    30.01.2024

    Masterthesis, Bachelorthesis

    Der Ottomotor ist Teil moderner Mobilitätskonzepte. Immer stringentere Anforderungen in Hinsicht auf Verbrauch und Schadstoffemissionen, sowie der zukünftige Einsatz von eFuels, machen die Optimierung von Ottomotoren zunehmende komplexer. Um diese Herausforderung zu meistern hat sich die Strömungssimulation (engl. Computational Fluid Dynamics – CFD) als ein probates Werkzeug erwiesen.

    Betreuer/innen: Max Hasenzahl, M.Sc., Vinzenz Schuh, M.Sc.

    Ausschreibung als PDF