Studentische Arbeiten

Studentische Arbeiten

Am Fachgebiet STFS werden Abschlussarbeiten (Bachelor/Master) und Projektarbeiten (ADP/ARP) angeboten. In der Regel stehen diese studentischen Arbeiten in engem Bezug zu unseren aktuellen Forschungsthemen, wie zum Beispiel:

  • Wasserstoffverbrennung
  • Daten-getriebene Modellierung von Verbrennungsphänomenen mittels maschinellem Lernen
  • Metallverbrennung (Clusterprojekt Clean Circles, Clean Circles Website)
  • Nachhaltige Brennstoffe, z.B. aus Power-to-X Prozessen
  • Flamme-Wand Interaktionen / Flammenschutzmittel (Sonderforschungsbereich 150)
  • Biomasseverbrennung (Sonderforschungsbereich 129)
  • Reduzierung von Schadstoffemissionen / Rußmodellierung
  • Aero Engines und Thermoakustik

Wenn Sie eine studentische Abschlussarbeit am Fachgebiet STFS suchen, können Sie die Ansprechpartner der unten eingestellten Arbeiten kontaktieren, oder Sie schreiben initiativ eine E-Mail an mit Ihrer Fächerübersicht, sowie der Nennung Ihrer Vorerfahrungen und Interessen – es ist möglich Aufgabenstellungen aus den oben genannten aktuellen Forschungsthemen abzuleiten und auf das Profil geeigneter Bewerber anzupassen.

Aktuelle Ausschreibungen

  • Bachelorthesis

    Micron sized metal powder can serve as a carbon free energy carrier in a circular energy economy, in a similar manner as hydrogen. Energy is stored by reducing aluminum ore to aluminum. The CO2-free combustion of aluminum particles suspended in pure steam (H2O) is one possible thermochemical process to release the stored energy, obtaining around half of the energy in the form of heat and hydrogen gas, respectively.

    Recently at STFS, a Lagrangian point-particle model has been developed which features the most important physical processes of individual particle combustion on the micro-scale. This enables simulations of macroscopic flame propagation through particle suspensions. In this thesis, the interaction of these micro-scale processes on the macroscopic flame propagation, i.e. flame stabilization is to be evaluated.

    Betreuer/in: Johannes Mich, M.Sc.

    Ausschreibung als PDF

  • HiWi for the analysis of high-resolution numerical simulations

    Direct Numerical Simulation (DNS) of Turbulent Flames

    08.07.2025

    Hiwi-Stelle

    At the Department of Simulation of Reactive Thermo-Fluid Systems, we are engaged in basic research on the combustion of regenerative energy sources such as hydrogen (H2) and ammonia (NH3) using numerical simulations.

    For this purpose, we are looking for dedicated support in the evaluation of simulation data of turbulent combustion (large amounts of data). We offer exciting and challenging tasks, extensive support and a flexible way of working.

    Depending on your interests and possibilities, the focus of your work can be adjusted (data analysis, simulations, documentation, model development, etc.). Experience in the implementation and evaluation of CFD simulations is an advantage but not essential. If the collaboration is successful, further supervision is possible if desired, e.g. for a thesis, ADP or joint publication. The scope of work is between 20 and 40 hours per month (increased hourly rate). I look forward to your inquiry!

    Betreuer/in: Felix Rong, M.Sc. M.Sc.

    Ausschreibung als PDF

  • Masterthesis

    The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) conducts cutting-edge research on reactive flows and alternative energy carriers. One of our focus areas is the combustion of metallic fuels, which have the potential to play a key role in future energy systems.

    Aluminum, in particular, undergoes a unique combustion process where evaporated metal reacts with steam, forming hydrogen and aluminum oxide. The global reaction and transport rates are controlled by a multitude of tightly coupled processes, including phase changes, gas phase reactions, thermophoresis, and droplet shape evolution—key aspects that are not yet fully understood.

    In this thesis, you will contribute to refining numerical models for these processes using OpenFOAM-based simulations. Your work will help improve the predictive capabilities of existing models, enabling more accurate simulations of aluminum combustion.

    Do you have experience in CFD, physical modeling, or programming (Python/C++) in a Unix-based environment? If not, are you eager to develop these skills? If so, we encourage you to contact us for more information!

    Betreuer/innen: Pascal Steffens, M.Sc., Johannes Mich, M.Sc.

    Ausschreibung als PDF