Studentische Arbeiten
Am Fachgebiet STFS werden Abschlussarbeiten (Bachelor/Master) und Projektarbeiten (ADP/ARP) angeboten. In der Regel stehen diese studentischen Arbeiten in engem Bezug zu unseren aktuellen Forschungsthemen, wie zum Beispiel:
- Wasserstoffverbrennung
- Daten-getriebene Modellierung von Verbrennungsphänomenen mittels maschinellem Lernen
- Metallverbrennung (Clusterprojekt Clean Circles, ) Clean Circles Website
- Nachhaltige Brennstoffe, z.B. aus Power-to-X Prozessen
- Flamme-Wand Interaktionen / Flammenschutzmittel (Sonderforschungsbereich 150)
- Biomasseverbrennung (Sonderforschungsbereich 129)
- Reduzierung von Schadstoffemissionen / Rußmodellierung
- Aero Engines und Thermoakustik
Wenn Sie eine studentische Abschlussarbeit am Fachgebiet STFS suchen, können Sie die Ansprechpartner der unten eingestellten Arbeiten kontaktieren, oder Sie schreiben initiativ eine E-Mail an lehre@stfs.tu-… mit Ihrer Fächerübersicht, sowie der Nennung Ihrer Vorerfahrungen und Interessen – es ist möglich Aufgabenstellungen aus den oben genannten aktuellen Forschungsthemen abzuleiten und auf das Profil geeigneter Bewerber anzupassen.
Aktuelle Ausschreibungen
Data science and model development for designing future clean energy systems
Bachelorthesis / Masterthesis / HiWi
11.07.2025
Masterthesis, Bachelorthesis, Hiwi-Stelle
To achieve current climate goals, rapid technological changes are necessary. Data driven model development from large-scale simulations will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) is at the forefront of pioneering advancements in large-scale simulations and AI-driven model development. Our mission is to lead groundbreaking research and development efforts, leveraging cutting-edge AI and HPC resources to solve complex problems and drive technological innovation.
Betreuer/in: Dr.-Ing. Hendrik Nicolai
Accelerate Innovations: High-Performance Computing Software Development for Heterogenous Architectures
Masterthesis / HiWi
11.07.2025
Masterthesis, Hiwi-Stelle
To achieve current climate goals, rapid technological changes are necessary. High-performance computing will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) aims to lead this journey by developing new generation of algorithms to enable simulations of reactive multiphase flows targeting the next generation of super computers. This includes Europe's first Exascale supercomputer, currently being built at our partner, Jülich Supercomputing Centre.
Betreuer/in: Dr.-Ing. Hendrik Nicolai
Cutting Edge High-Performance Computing: Towards ExascaleCFD simulations
Masterthesis/ HiWi
11.07.2025
Masterthesis, Hiwi-Stelle
To achieve current climate goals, rapid technological changes are necessary. High-performance computing will be a crucial pillar for future engineers, enabling a swift transition of the energy system through innovative technical solutions.
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) aims to lead this journey by performing groundbreaking simulations. This includes leveraging Europe's first Exascale supercomputer, recently launched at our partner, Jülich Supercomputing Centre.
Betreuer/in: Dr.-Ing. Hendrik Nicolai
Bachelorthesis
Micron sized metal powder can serve as a carbon free energy carrier in a circular energy economy, in a similar manner as hydrogen. Energy is stored by reducing aluminum ore to aluminum. The CO2-free combustion of aluminum particles suspended in pure steam (H2O) is one possible thermochemical process to release the stored energy, obtaining around half of the energy in the form of heat and hydrogen gas, respectively.
Recently at STFS, a Lagrangian point-particle model has been developed which features the most important physical processes of individual particle combustion on the micro-scale. This enables simulations of macroscopic flame propagation through particle suspensions. In this thesis, the interaction of these micro-scale processes on the macroscopic flame propagation, i.e. flame stabilization is to be evaluated.
Betreuer/in: Johannes Mich, M.Sc.
Masterthesis
The Institute for Simulation of Reactive Thermo-Fluid Systems (STFS) conducts cutting-edge research on reactive flows and alternative energy carriers. One of our focus areas is the combustion of metallic fuels, which have the potential to play a key role in future energy systems.
Aluminum, in particular, undergoes a unique combustion process where evaporated metal reacts with steam, forming hydrogen and aluminum oxide. The global reaction and transport rates are controlled by a multitude of tightly coupled processes, including phase changes, gas phase reactions, thermophoresis, and droplet shape evolution—key aspects that are not yet fully understood.
In this thesis, you will contribute to refining numerical models for these processes using OpenFOAM-based simulations. Your work will help improve the predictive capabilities of existing models, enabling more accurate simulations of aluminum combustion.
Do you have experience in CFD, physical modeling, or programming (Python/C++) in a Unix-based environment? If not, are you eager to develop these skills? If so, we encourage you to contact us for more information!
Betreuer/innen: Pascal Steffens, M.Sc., Johannes Mich, M.Sc.