Simulation of flame propagation in Aluminum-Steam suspensions
Bachelorthesis
Micron sized metal powder can serve as a carbon free energy carrier in a circular energy economy, in a similar manner as hydrogen. Energy is stored by reducing aluminum ore to aluminum. The CO2-free combustion of aluminum particles suspended in pure steam (H2O) is one possible thermochemical process to release the stored energy, obtaining around half of the energy in the form of heat and hydrogen gas, respectively.
Recently at STFS, a Lagrangian point-particle model has been developed which features the most important physical processes of individual particle combustion on the micro-scale. This enables simulations of macroscopic flame propagation through particle suspensions. In this thesis, the interaction of these micro-scale processes on the macroscopic flame propagation, i.e. flame stabilization is to be evaluated.
